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Solidification of free liquid films
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We examine steady longitudinal freezing of a two-dimensional single-component free
liquid film. In the liquid, there are thermocapillary and volume-change flows as a
result of temperature gradients along the film and density change upon solidification.
We examine these flows, heat transfer, and interfacial shapes using an asymptotic
analysis which is valid for thin films with small aspect ratios. These solutions depend
sensitively on contact conditions at the tri-junctions. In particular, when the sum
of the angles formed in the solid and liquid phases falls below a critical value,
the existence of steady solutions is lost and the liquid film cannot be continuous,
suggesting breakage of the film owing to freezing. The solutions are relevant to the
freezing of foams of metals or ceramics, materials unaffected by surface active agents.

1. Introduction
Modelling solidification of a free liquid film requires formulating several free-

boundary problems. Deformable interfaces separate the liquid phase from a passive
gas phase, a moving solidification front separates the solid and liquid phases, and
triple points (tri-junctions) are present where all three phases meet. The location
of these boundaries must be determined as part of the solution and, in fact, are
themselves active sources of heat and fluid flows. For instance, latent heat is released
at the solidification front as it advances through the liquid phase. In addition, the
liquid typically contracts (or expands) upon solidification. When this occurs, the
solid–liquid interface acts as a fluid sink (or source) that drives a bulk volume-
change flow in the liquid phase towards (or away from) the freezing front to conserve
mass. Furthermore, longitudinal temperature gradients in the liquid film result in
non-uniform surface tension at the gas–liquid interface. These interfacial stresses are
transferred by viscosity to the bulk, resulting in a thermocapillary flow throughout
the melt.

Consider a two-dimensional free liquid film, symmetric about its centreline, which
is longitudinally frozen by pulling it through a heat exchanger with high and low
temperatures that bracket the melting temperature. This unidirectional solidification
set-up is illustrated in figure 1. We concern ourselves solely with the solidification of
single component melts. In principle, by maintaining a fixed pulling speed, a steady
state is eventually reached. Herein, we describe this steady configuration.

During the solidification of metallic foams, the thin liquid bridges (lamellae)
separating adjacent gas bubbles are frozen. When this process is carried out
successfully, a light-weight porous solid is produced which exhibits a high ratio
of rigidity to specific weight and excellent energy absorption on impact. These are
desirable properties in a number of applications, particularly those in the automotive
and aerospace industries (see Banhart 2001; Weaire & Hutzler 2000). In aqueous
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Figure 1. The free liquid film is frozen longitudinally by pulling it through a heat exchanger
with high and low temperatures bracketing the melting temperature.

foams, surfactant is injected to immobilize the gas–liquid interfaces and stabilize the
foam. In fact, the study of aqueous foams reduces to that of surfactant transport.
In metals, there is no surfactant available, and so a principal difficulty in solidifying
them comes from rapid coarsening ahead of the freezing front, which is the result
of film rupture followed by coalescence of the adjacent gas bubbles. Film rupture
can be measured in milliseconds for metals (Banhart et al. 2001). A detailed study of
the microflows in individual lamellae is necessary for the prediction of thinning rates
and rupture times, which ultimately set the time scales for coarsening. Such a study
was given by Breward & Howell (2002) and extended by Brush & Davis (2005) for
lamellae under isothermal conditions, but the effects of freezing have not yet been
considered.

The set-up shown in figure 1 idealizes the solidification of a foam lamella. In
particular, for metallic foams with low liquid fractions, the lamellar junctions (Plateau
borders) will be relatively small. Consequently, it is reasonable to expect a uniform
quasi-steady temperature in the Plateau borders. A single lamella which is being
frozen is then a film between hot and cold regions. The results presented here are
therefore particularly relevant to the solidification of metallic foams.

This method for freezing liquid films also shares many characteristics with
containerless solidification in industry. In meniscus-defined systems, such as float-
zone and Czochralski systems, among others (for example, see Brown 1988), the
melt is contained by its own surface tension. In the float-zone technique, a solid
polycrystalline rod is fed past a heating coil where it melts and then resolidifies into
a single crystal. The liquid melt region forms a meniscus which bridges the two solid
phases. Here, thermocapillary convection in the melt has received much attention since
it has important implications on the overall size and quality of the crystal produced
(for example, see Kuhlmann 1999). Extensive literature is devoted to describing these
fluid dynamics using simplified systems such as half-zone and full-zone models in
which the processes of freezing and melting are not considered. Further, floating
zones have circular cross-sections that may be susceptible to Rayleigh breakup.

Our analysis of the freezing film shown in figure 1 takes advantage of the small
aspect ratio A ≡ d0/L. There is previous work on steady thermocapillary flows
induced by longitudinal temperature gradients in thin liquid layers (Levich 1962; Yih
1969; Sen & Davis 1982; Xu & Davis 1983; Sen 1986). The first rational asymptotic
theory in the limit A → 0 is given by Sen & Davis (1982). They treat a liquid layer
in a shallow two-dimensional slot which has sidewalls held at different temperatures,
and find steady solutions using an asymptotic matching procedure. In the core region,
away from the sidewalls, the solutions have nearly parallel flow and a nearly flat
gas–liquid interface. Boundary-layer corrections near the sidewalls, where the flow
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turns over, are matched to the core flow. This approach was extended by Sen (1986)
to allow for O(1) deformations to the gas–liquid interface.

We extend this earlier work (Sen & Davis 1982; Sen 1986) to analyse the present
problem. Note that here the fluid domain is bounded only at one end by the solid–
liquid interface, and we must also address the phase transformation and accompanying
volume-change flow. This adds new features to the analysis, since it involves solving
the heat transfer problem across both the solid and liquid phases and simultaneously
determining the location of the freezing front, which is a priori unknown. To this end,
we obtain approximate solutions for the solid and liquid temperature profiles as well
as for the fluid flow in the limit A → 0. In deriving these solutions, we incorporate
convection in the melt, latent heat, and deformations to the solid–liquid interface
systematically within a consistent asymptotic framework.

2. Formulation
Let the distance between the two heat exchanger plates in figure 1 be given by 2L.

The freezing temperature of the melt lies between the temperatures TH and TC of the
hot and cold plates, respectively. In principle, by maintaining a fixed pulling speed
V , a steady state like the one shown can be reached in which a solid bar of uniform
thickness 2d0 is produced. In this section, we first write down the conservation
equations and boundary conditions which describe this steady-state configuration.
This description will include thermocapillary and volume-change flows in the melt
which are bounded by deformable gas–liquid and solid–liquid interfaces.

2.1. Governing equations and boundary conditions

In the frame of reference shown in figure 1, let x measure distance from the film
centreline and z measure distance along the film. The liquid phase is assumed to be
an incompressible Newtonian fluid governed by the following mass and momentum
balances

∇ · v = 0, (2.1)

ρl(v · ∇v − V vz) = −∇p + μ∇2v, (2.2)

where μ is the dynamic viscosity and ρl is the liquid density (subscripts on dependent
variables denote partial differentiation). Here, v = (u, w) is the additional fluid motion
arising from thermocapillary and volume-change effects. We have assumed that gravity
is negligible, which is a good approximation when the film is thin and the distance
between the plates is not too large. The steady temperature distributions in the solid
(T s) and liquid (T l) phases are governed by the following heat balances

v · ∇T l − V T l
z = κl∇2T l (z > h), (2.3)

−V T s
z = κs∇2T s (z < h), (2.4)

where κl and κs are liquid and solid thermal diffusivities. We assume constant densities
and thermal properties in the liquid and solid.

The film is symmetric about its centreline, and we consider only the region x � 0.
This symmetry is ensured by the following boundary conditions at x = 0,

u = wx = T l
x = T s

x = 0. (2.5)

At the gas–liquid interface, x = d(z), there is a kinematic condition

(v − V k) · ngl = 0 (2.6)
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and stress balance

S · ngl = −σ (T )K(d) ngl +
dσ

dT
(∇T · tgl)tgl, (2.7)

where S = −pI + μ[∇v + (∇v)T ] is the stress tensor, ngl =(1, −dz)/
√

1 + d2
z is

the unit normal vector to the gas–liquid interface pointing out of the liquid,
tgl = (dz, 1)/

√
1 + d2

z is the unit tangent vector, k =(0, 1) is a unit vector in the

z-direction, and K(d) = −dzz(1+d2
z )

−3/2 is twice the mean curvature. The temperature
dependence of the surface tension σ (T ) in (2.7) is specified through a linear equation
of state,

σ (T ) = σ0 − γ (T − Tm) , (2.8)

where σ0 is the surface tension at the equilibrium melting temperature Tm. The
normal stresses in (2.7) balance the Laplace pressure, σK, and the tangential stresses
balance gradients in the surface tension as a result of temperature variations along
the interface. We consider the case where γ = − dσ/dT > 0, which is the case for
common liquids, so that the shear stress along the gas–liquid interface is directed
from hot to cold. These stresses drive thermocapillary flow in the film.

The solid–liquid interface is the site of a phase transformation in which the liquid
of density ρl changes to a solid of density ρs . A mass balance at z = h(x) gives

ρl v · nsl = (ρl − ρs) V k · nsl, (2.9)

where nsl = (−hx, 1)/
√

1 + h2
x is the unit normal pointing into the liquid. Since this

interface is a rigid boundary, the following no-slip condition applies at z = h(x) as
well

v · tsl = 0, (2.10)

where tsl = (1, hx)/
√

1 + h2
x is the unit tangent to the interface. From (2.9), we see

that when ρs = ρl , the interface is impermeable to flow, but when ρs �= ρl , it acts
as a source (ρs < ρl) or sink (ρs > ρl) for flow with strength proportional to the
solidification speed. This is the origin of volume-change flow in the film.

Thermal boundary conditions are specified next. We assume that the sides are
insulated by the passive gas phase which requires the following no-flux conditions

∇T l · ngl = 0 at x = d(z), (2.11)

T s
x = 0 at x = d0. (2.12)

At the hot and cold plates, we prescribe the temperature

T l = TH at z = L, (2.13)

T s = TC at z = −L, (2.14)

implying perfect thermal contact between the film and the plates. When local
equilibrium prevails at the solid–liquid interface, the temperature is continuous there.
At z = h(x), the thermodynamic freezing temperature for the deformable interface is
given by the Gibbs–Thompson relation

T l = T s = Tm

(
1 − γ̂

Lv

K (h)

)
, (2.15)

where K(h) = − hxx(1 + h2
x)

−3/2 is twice the mean curvature of the interface, γ̂ is
the interfacial surface energy, and Lv is the latent heat of fusion per unit volume of
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solid. This relation states that a solid finger extending into the liquid will melt at
temperatures below Tm owing to curvature. Also at z = h(x), there is a heat balance
which accounts for the continuous production of latent heat

(ks∇T s − kl∇T l) · nsl = LvV k · nsl, (2.16)

where ks and kl are solid and liquid thermal conductivities.

2.2. Lubrication scaling

The disparate length scales d0 and L motivate a lubrication-type scaling of the
governing equations and boundary conditions. We introduce the following dimen-
sionless (primed) quantities:

x = d0x
′, z = Lz′, d = d0d

′, h = Lh′,

u = Aw�u
′, w = w�w

′, p = (μw�/Ad0)p
′, T = Tm + (TH − TC)T ′,

where A= d0/L is the aspect ratio of the film. The velocity scale w� is determined
from the relative strengths of the thermocapillary and volume-change flows. The
characteristic velocity scale for thermocapillary flow is determined by examining the
the tangential component of (2.7). Balancing viscous shear stresses and surface tension
gradients leads to the velocity scale

wtc =
γA(TH − TC)

μ
.

Similarly, the characteristic velocity scale for volume-change flow is determined by
the interfacial mass balance (2.9). The velocity scale is proportional to the rate of
volume change

wvc =
|ρl − ρs |V

ρl

.

In § 4, we discuss the three cases wvc � wtc wvc 	 wtc and wvc ∼ wtc .
This rescaling is now applied to the system (primes are dropped). By introducing a

dimensionless streamfunction ψ , such that

v − W −1k = (ψz, −ψx) , (2.17)

where W = w�/V , the continuity equation is satisfied automatically and both compo-
nents of the momentum equation can be combined into a single equation in which
the pressure is eliminated, yielding

ψxxxx + 2A2ψxxzz + A4ψzzzz = AWR[ψz(ψxxx + A2ψxzz) − ψx(ψxxz + A2ψzzz)].

(2.18)

Dimensionless equations for the liquid and solid temperatures take the form

T l
xx + A2T l

zz = AWP
(
ψzT

l
x − ψxT

l
z

)
, (2.19)

T s
xx + A2T s

zz = −APκ−1T s
z . (2.20)

Along the sides of the film, we have at x = d(z) the scaled tangential stress balance

[
4A2dzψxz −

(
1 − A2d2

z

)
(ψxx − A2ψzz)

](
1 + A2d2

z

)−1

= −AM
(
dzT

l
x + T l

z

)(
1 + A2d2

z

)−1/2
, (2.21)
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and normal stress balance

−p + 2A2
[(

1 − A2d2
z

)
ψxz + dz(ψxx − A2ψzz)

](
1 + A2d2

z

)−1

= A3C−1dzz

(
1 − CMT l

)(
1 + A2d2

z

)−3/2
, (2.22)

as well as the no-flux conditions

T l
x = A2dzT

l
z at x = d, (2.23)

T s
x = 0 at x = 1. (2.24)

The kinematic condition is equivalent to specifying the value of the streamfunction
at x = d(z), such that

ψ = ψw = −
∫ d(z)

0

(w − W −1) dx, (2.25)

since, for steady solutions, the total flow rate must be the same through every
cross-section. At the film centreline, x = 0, the symmetry conditions are

ψ = ψxx = T l
x = T s

x = 0. (2.26)

Dimensionless boundary conditions at z = h(x) take the form

W (hxψz + ψx) = ρ, (2.27)

W (hxψx − A2ψz) = hx, (2.28)

T l = T s = A−1Γ hxx

(
1 + A−2h2

x

)−3/2
, (2.29)

ρκ
(
A2T s

z − hxT
s
x

)
−

(
A2T l

z − hxT
l
x

)
= AL, (2.30)

which are derived from (2.9), (2.10), (2.15) and (2.16), respectively. Finally, at the hot
and cold plates, we have

T l = θH at z = 1, (2.31)

T s = θC at z = −1, (2.32)

where θH = (TH − Tm)/(TH − TC) and θC =(TC − Tm)/(TH − TC) are the scaled plate
temperatures. The dimensionless parameters that appear in the equations above are
defined in table 1.

3. Matched asymptotic analysis
We are interested in films with small aspect ratios (A 	 1). In this section,

approximate asymptotic solutions are found in the limit A → 0. In this limit, a regular
perturbation is not uniformly valid: there exists a boundary-layer (inner) region of
thickness O(A) at the solid–liquid interface. On the one hand, thermocapillary flow
driven from hot to cold must recirculate at the solid–liquid interface in order to
conserve mass, causing an appreciable transverse flow. We follow Sen & Davis (1982),
who treat these turnover flows as boundary-layer corrections matched to an outer
(core) flow. On the other hand, because the solid–liquid interface is deformable in
the present case, a boundary layer is, in general, necessary to satisfy the boundary
conditions there. Of course, the size of these deformations cannot exceed O(A), the
thickness of the boundary layer.
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Dimensionless parameter Definition Typical size (metallic foams)

A aspect ratio
d0

L
�10−1

W speed ratio
w�

V
Arbitrary

κ thermal diffusivity ratio
κs

κl

≈2

ρ density ratio
ρs

ρl

≈1

R Reynolds number
d0ρlV

μ
�10−1

P Péclet number
d0V

κl

�10−2

C capillary number
μw�

σ0

�10−2

M Marangoni number
γ (TH − TC)

μw�

Arbitrary

L Stefan number
d0LvV

kl(TH − TC)
Arbitrary

Γ surface energy number
γ̂ Tm

d0Lv(TH − TC)
�1

Table 1. The dimensionless parameters appearing in (2.17)–(2.32) are defined. In the right-hand
column, typical values for a metallic foam system are given in order to provide a point of
reference for the developement of our model in § 3. In § 5, the primary assumptions of the
model are discussed in the context of specific examples.

Below, matched asymptotic expansions are constructed in the inner and outer
regions to form leading-order composite solutions which are valid over the entire
domain. The asymptotic analysis is based on the following limits:

M = A−1M̄, R = AR̄, P = AP̄ , C = A3C̄, L = AL̄,

with M̄ , R̄, P̄ , C̄ and L̄ all O(1) as A → 0. Parameters which are not listed above are
assumed to be of unit order. The limit M = A−1M̄ is chosen to include thermocapillary
effects in the leading-order balance. However, variations in surface tension are still
small along the film since CM = A2C̄M̄ requires that σ0 � γ (TH − TC). The limit
R = AR̄ holds for slow viscous flow, where inertial terms do not play a role in the
leading approximation. The assumption P = AP̄ represents a distinguished limit in the
thermal problem. We show that, as a result of the no-flux conditions along the sides,
pure conduction does not hold in this limit with convection entering from the net
flow produced from volume change. Note that these choices for R and P correspond
to Prandtl numbers, Pr= P/R = ν/κl , of unit order. Prandtl numbers of different sizes
are obtained using different limits for R and P . With the assumption C = A3C̄, the
capillary pressure is expressed at leading order and, as Sen (1986) has pointed out, the
gas–liquid interface may undergo O(1) deformations. Lastly, we discuss the Stefan
number limit L = AL̄ further when we introduce scalings and derive solutions for
the inner region.

The prescription of contact conditions has important implications for the overall
morphology of the deformable interfaces. We examine a situation in which the
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Figure 2. Close-up of the tri-junction region with angles ϕs and ϕl measured in the solid
and liquid, respectively.

gas–liquid interface is pinned at a fixed location on the hot plate. This is realistic;
however, choices which allow the interface to move freely along the hot plate may be
more appropriate in specific situations (for example, the prescription of curvature at
the hot plate coarsely models a lamella ‘joined’ with an adjacent Plateau border. See
Breward & Howell (2002) and Brush & Davis (2005) for a more detailed model). At
the tri-junctions, where the gas, liquid and solid phases meet, the contact conditions
are illustrated in figure 2. The gas–solid and solid–liquid interfaces which form angle
ϕs are allowed to be nearly perpendicular by taking ϕs = π/2 + Aα, with α =O(1) as
A → 0. For the intersection of the gas–liquid and solid–liquid interfaces, we consider
liquid angles ϕl = π/2 + Aβ , with β =O(1) as A → 0. These choices for ϕs,l are
consistent with the small-slope analysis used here.

A few comments should be made about the prescription of contact conditions at
the tri-junctions. Integrable point singularities in the pressure and stress fields are
known to exist at tri-junctions, and they have been characterized according to wedge
angle for thermocapillary (Anderson & Davis 1994b; Kuhlmann, Nienhuser & Rath
1999) and volume-change (Anderson & Davis 1994a) flows using a local analysis.
In related problems (e.g. die-swell), it is known that when capillary forces enter the
dominant balance at the tri-junction, infinite curvatures may arise (Schultz & Gervasio
1990). The extent of the region of large curvature decreases with decreasing capillary
number (Salamon, Bornside & Armstrong 1995), indicating the singular nature of
the limit C → 0 near a contact line singularity (Anderson & Davis 1993). It follows
that our prescription of the angles ϕs and ϕl is a macroscopic one – the microscopic
angles may be different.

3.1. Outer region

Approximate solutions in the outer region are derived by introducing the following
expansions

ψ ∼ ψ0 + Aψ1, p ∼ p0 + Ap1, T ∼ T0 + AT1, d ∼ d0 + Ad1.

At leading order, we obtain the equations

T l
0xx = 0, T s

0xx = 0, ψ0xxxx = 0, (3.1)

with associated boundary conditions

x = 0 : T l
0x = T s

0x = 0, (3.2)

ψ0 = ψ0xx = 0, (3.3)

x = 1 : T s
0x = 0, (3.4)

x = d0(z) : T l
0x = 0, (3.5)

ψ0 = ψw, ψ0xx = M̄
(
d0zT

l
0x + T l

0z

)
, (3.6)

p0 = −C̄−1d0zz. (3.7)
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Equations (3.1a, b), (3.2), (3.4) and (3.5) admit x-independent solutions T l
0 = T l

0 (z)
and T s

0 = T s
0 (z). In order for non-trivial solutions to exist, solvability conditions must

be imposed at higher orders. Since P = O(A), we see from (2.19) and (2.20) that these
conditions are postponed to O(A2). First, we enforce solvability on the liquid side,
where the O(A2) problem has the form

T l
2xx = −T l

0zz − WP̄ψ0xT
l
0z,

with boundary conditions

T l
2x = 0 at x = 0,

T l
2x = d0zT

l
0z at x = d0(z).

In accordance with the Fredholm alternative, the following orthogonality condition
must hold for solvability∫ d0

0

(
T l

0zz + WP̄ψ0xT
l
0z

)
dx + d0zT

l
0z = 0.

Using the boundary conditions (3.3a) and (3.6a), this is integrated to give(
d0T

l
0z

)
z
+ WP̄ψwT l

0z = 0. (3.8)

Proceeding similarly for the solid phase, solvability requires

T s
0zz + P̄ κ−1T s

0z = 0. (3.9)

Equations (3.8) and (3.9) must be supplemented with boundary conditions. From
conditions at the hot and cold plates, (2.31) and (2.32), we have

T l
0 = θH at z = 1, (3.10)

T s
0 = θC at z = −1. (3.11)

We derive additional conditions from matching to the solutions in the inner region.
We now move on to solve the flow problem. The solution to (3.1c), (3.3) and (3.6)

gives the leading-order streamfunction

ψ0(x, z) =
xψw

d0

+
M̄

6d0

x
(
x2 − d2

0

)
T l

0z. (3.12)

From the O(1) x-momentum balance, p0x =0, we conclude that the pressure is
independent of x and given immediately by the normal stress condition (3.7),

p0(z) = −C̄−1d0zz. (3.13)

Lastly, upon substituting p0 and ψ0 into the O(1) z-momentum balance, p0z = −ψ0xxx ,
we have

d0d0zzz = C̄M̄T l
0z, (3.14)

which is the equation for d0. Equation (3.14) requires three boundary conditions. One
comes from pinning the gas–liquid interface at a fixed position on the hot plate. For
all the solutions presented here, we use

d0 = 1 at z = 1. (3.15)

The remaining two conditions come from matching to the inner region.



96 A. M. Anderson and S. H. Davis

3.2. Inner region

In the inner region, the appropriate stretching transformation is z = Az̃. In these
variables, the equations for the streamfunction and temperature are

∇4ψ = AWR̄ [ψz̃ (ψxxx + ψxz̃z̃) − ψx (ψxxz̃ + ψz̃z̃z̃)] , (3.16)

∇2T l = AWP̄
(
ψz̃T

l
x − ψxT

l
z̃

)
, (3.17)

∇2T s = −AP̄κ−1T s
z̃ , (3.18)

where ∇2 = ∂2
x + ∂2

z̃ is the Laplacian operator. The boundary conditions transform as
follows:

x = 0 : ψ = ψxx = T l
x = T s

x = 0, (3.19)

x = 1 : T s
x = 0, (3.20)

x = d : T l
x = dz̃T

l
z̃ , (3.21)

ψ = ψw, (3.22)

A
[
4dz̃ψxz̃ −

(
1 − d2

z̃

)
(ψxx − ψz̃z̃)

] (
1 + d2

z̃

)−1

= −M̄
(
dz̃T

l
x + T l

z̃

) (
1 + d2

z̃

)−1/2
, (3.23)

A2p − 2A3
[(

1 − d2
z̃

)
ψxz̃ + dz̃ (ψxx − ψz̃z̃)

] (
1 + d2

z̃

)−1

= −C̄−1dz̃z̃

(
1 − A2C̄M̄T l

) (
1 + d2

z̃

)−1/2
, (3.24)

z̃ = h̃ : W (h̃xψz̃ + ψx) = ρ, (3.25)

W (ψz̃ − h̃xψx) = h̃x, (3.26)

T l = T s = Γ h̃xx

(
1 + h̃2

x

)−3/2
, (3.27)

ρκ
(
T s

z̃ − h̃xT
s
x

)
−

(
T l

z̃ − h̃xT
l
x

)
= AL. (3.28)

Here, we have rescaled the height of the solid–liquid interface such that h = Ah̃.
Additionally, because we are setting ϕs = π/2+Aα and ϕl = π/2+Aβ (refer to figure 2),
the contact conditions at the tri-junction have forms

d = 1, dz̃ = A (α + β) , h̃x = −Aα. (3.29)

Solutions are derived below by introducing the following inner expansions into the
above equations and boundary conditions,

ψ ∼ ψ̃0 + Aψ̃1, p ∼ p̃0 + Ap̃1, T ∼ T̃0 + AT̃1, d ∼ d̃0 + Ad̃1, h̃ ∼ Ah̃1.

Note that deformations to the solid–liquid interface are assumed to be O(A) in the
inner region. We expect a planar interface at leading-order since it satisfies the contact
conditions (i.e. setting A= 0 in (3.29c)) and is known to be stable. For convenience,
we have chosen the leading-order position of the solid–liquid interface to be z̃ =0.
Since this interface is a free boundary, this choice cannot be made arbitrarily. In the
analysis below, we demonstrate that the latent heat balance results in an additional
condition that must be enforced to ensure compatibility.

Equation (3.24) indicates that normal stresses on the gas–liquid interface result in
an O(A2) perturbation. Consequently, since the curvature of the gas–liquid interface
is zero up to O(A), this yields

d̃0 = 1, d̃1 = (α + β)z̃, (3.30)
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which satisfy the contact conditions in (3.29a, b). When this result is matched to the
outer solution, we obtain the following conditions

d0 = 1, d0z = α + β, at z = 0, (3.31)

which follows from Taylor expanding the outer solutions at z = 0 and comparing the
result with (3.30). We see that the tri-junction conditions are simply transferred to the
outer solution, providing the remaining conditions required in order to solve (3.14).

We move on to the O(1) thermal problem. The solid and liquid temperatures satisfy
the following leading-order equations

∇2T̃ s
0 = 0, ∇2T̃ l

0 = 0,

and boundary conditions

x = 0, 1 : T̃ s
0x = T̃ l

0x = 0,

z̃ = 0 : T̃ s
0 = T̃ l

0 = 0.

Further, matching to the outer region requires bounded solutions as z̃ → ∞. The only
such solutions are the isothermal ones

T̃ s
0 ≡ 0, T̃ l

0 ≡ 0. (3.32)

Matching conditions for the outer solutions follow immediately:

T s
0 = T l

0 = 0 at z = 0. (3.33)

These provide the remaining conditions required in order to solve (3.8) and (3.9) for
the temperature profiles in the outer regions. Note that in order to have isothermal
solutions at leading order, we must take L = o(1) in the heat balance equation (3.28)
as we have already done.

Before the leading-order flow problem can be solved in the inner region, it is
necessary to determine the O(A) temperature field to compute the thermocapillary
stresses on the gas–liquid interface in (3.23). In the course of solving for temperature,
we also obtain the O(A) deformations to the solid–liquid interface. The O(A) thermal
problem involves the following equations

∇2T̃ s
1 = 0, ∇2T̃ l

1 = 0,

with boundary and contact conditions

x = 0 : T̃ s,l
1x = 0, h̃1x = 0,

x = 1 : T̃ s,l
1x = 0, h̃1x = −α,

z̃ = 0 : T̃ s,l
1 = Γ h̃1xx, ρκT̃ s

1z̃ − T̃ l
1z̃ = L̄.

Here we have used the assumption L = AL̄, which was introduced ealier. In addition,
there are matching conditions with the outer solution,

T̃ s,l
1 ∼ T s,l

1

∣∣
z=0

+ z̃ T s,l
0z

∣∣
z=0

as z̃ → ∞.

Consider the following parabolic profile for the shape of the solid–liquid interface

h̃1 = H̃ − 1
2
αx2, (3.34)

where H̃ is a constant. This profile is consistent with the contact conditions and
has constant (linearized) curvature, leading to an isothermal melting temperature
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at this order, specifically T̃ s,l
1 = − αΓ at z̃ = 0. The corresponding solid and liquid

temperature profiles are

T̃ s,l
1 = −αΓ +

(
T s,l

0z

∣∣
z=0

)
z̃. (3.35)

We have verified that (3.34) and (3.35) are the only possible solutions using cosine
expansions for both h̃1 and T̃ s,l

1 . When (3.35) is substituted into the heat balance, we
have (

ρκT s
0z − T l

0z

)
|z=0 = L̄. (3.36)

Recalling the remarks made earlier, the temperature field must be compatible
with (3.36) in order to specify z̃ = 0 as the leading-order position of the solid–liquid
interface. (The constant H̃ in (3.34) is determined from an analogous compatibility
condition obtained from the O(A2) interfacial heat balance, not pursued here.) We
deal with this compatibility condition in more detail in the next section.

Finally, we address the O(1) flow problem. The convective terms in (3.16) do not
contribute at leading order, so that

∇4ψ̃0 = 0. (3.37)

The boundary conditions on ψ̃0 are

x = 0 : ψ̃0 = ψ̃0xx = 0 (3.38)

x = 1 : ψ̃0 = ψw, ψ̃0xx = M̄
(
T l

0z

∣∣
z=0

)
, (3.39)

z̃ = 0 : ψ̃0 = ρW −1x, ψ̃0z̃ = 0, (3.40)

and matching to the outer solution, (3.12), gives

lim
z̃→0

ψ̃0 = ψwx + 1
6
M̄

(
T l

0z

∣∣
z=0

)
(x2 − 1)x. (3.41)

The boundary condition (3.40a) was derived from the mass balance (3.25) at the solid–
liquid interface and, in this form, it is clear that ψw = ρW −1. The system, (3.37)–(3.41),
can be solved using the following sine expansion

ψ̃0 − ψwx − M̄

6

(
T l

0z

∣∣
z=0

)
(x2 − 1)x =

∞∑
n=1

Ψn(z̃) sin(nπx), (3.42)

where we have introduced a particular solution to homogenize the boundary
conditions in (3.38) and (3.39). When the system is transformed under this expansion,
the coefficients Ψn(z̃) are found to satisfy

(D2 − n2π2)2Ψn(z̃) = 0,

with boundary conditions at z̃ = 0

Ψn = −2M̄(−1)n

n3π3
T l

0z|z=0, DΨn = 0,

and with Ψn → 0 as z̃ → ∞, where D ≡ d/dz̃. It follows that

Ψn(z̃) = −
2M̄(−1)nT l

0z|z=0

n3π3
(1 + nπz̃) e−nπz̃. (3.43)
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We can now write down a leading-order composite streamfunction

ψc ∼ ψ0 + ψ̃0 − ψwx − M̄

6

(
T l

0z

∣∣
z=0

)
(x2 − 1)x

=

[
ρW −1 +

M̄

6

(
x2 − d2

0

)
T l

0z

]
x

d0

+

∞∑
n=1

Ψn(A
−1z) sin(nπx), (3.44)

which is valid throughout the liquid region.

4. Solutions
We begin with a summary of the results of the last section. The leading-order solid

and liquid temperatures, T s
0 (z) and T l

0 (z), were found to satisfy

T s
0zz + P̄ κ−1T s

0z = 0, T s
0 (0) = 0, T s

0 (−1) = θC, (4.1)(
d0T

l
0z

)
z
+ ρP̄ T l

0z = 0, T l
0 (0) = 0, T l

0 (1) = θH , (4.2)

where we have made use of the substitution ψw = ρW −1 in (4.2a). Note that the
temperature profile in the liquid is modified by the density ratio ρ since heat can be
convected through the film by the volume-change flow. The leading-order position of
the gas–liquid interface, d0(z), was found to satisfy

d0d0zzz = C̄M̄T l
0z, d0(0) = 1, d0z(0) = α + β, d0(1) = 1. (4.3)

We see here that the shape of the gas–liquid interface and the liquid temperature are
tightly coupled. Once we have determined T l

0 and d0 from the above boundary-value
problems, the leading-order composite streamfunction is obtained from (3.44).

The solutions to (4.1)–(4.3) must be compatible with the leading-order heat balance
at the solid–liquid interface given by (3.36). This constraint can be met, for example,
by prescribing an appropriate temperature at the cold plate and fixing the values of
all remaining parameters. The solution to (4.1) can be found readily,

T s
0 (z) = θC

(
1 − e−P̄ z/κ

1 − eP̄ /κ

)
. (4.4)

Substituting this result into (3.36) and solving for θC gives

θC =
1

ρP̄

(
1 − eP̄ /κ

)(
L̄ + T l

0z(0)
)
, (4.5)

which is the compatible temperature for the cold plate. This prescription was used to
obtain the solid and liquid temperature profiles shown in figure 3. Here, and for all
of the results that follow, we have used θH = 1 for the hot-plate temperature.

We now examine flow patterns and deformations to the gas–liquid interface.
Contours of the streamfunction ψc show the motion of the entire material volume
which includes translation, whereas the contours of ψc − W −1x show only the
additional fluid motion generated by thermocapillarity and volume change. In the
figures that follow, we show both, since contours of the former are more conveniently
observed in an experiment and contours of the latter allow us to examine the special
features of the thermocapillary and volume-change effects.

First, consider the case with ρ = 1, where there is no change in density upon
solidification. The gas–liquid interface and flow patterns for this case are plotted
in figure 4 for two different contact angles, β =1 and β = −0.4, with α = 0 in both
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Figure 3. The leading-order temperature (—–) and heat flux (- - -) are plotted for the solid
and liquid phases (M̄ = 0, ρ = 1, P̄ = 1, κ = 1, α = β = 0). There is a jump of size L̄ = 1 in the
heat flux at the solid–liquid interface (z = 0), verifying compatibility with the latent heat heat
balance.
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Figure 4. Deformations to the gas–liquid interface and flow patterns produced by
thermocapillary flow for two contact conditions: (a) α = 0, β = 1 and (b) α = 0, β = −0.4
(W = 1, P̄ = 1, M̄ = 1, C̄ = 10, A = 0.1). There is no volume-change flow (ρ = 1). The gas-liquid
interface bulges near the solid–liquid interface because higher pressure is developed there by
the recirculation of fluid. This is consistent with the solutions obtained by Sen & Davis (1982)
and Sen (1986).
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Figure 5. When P̄ �= 0, volume-change flow convects heat towards (ρ > 1) or away from
(ρ < 1) the solid–liquid interface which shifts the liquid temperature profile (a) and in turn
deforms the gas-liquid interface (b). Letting P̄ = 5, M̄ = 1, C̄ = 10 and α = β =0, this effect is
shown here for the three cases: ρ =0.5 (dot-dash), ρ = 1 (dash), ρ = 1.5 (solid).

cases. Additionally, we have chosen the following parameter values: W = 1, M̄ = 1,
C̄ = 10 and P̄ =1. In both cases, the flows induced from thermocapillarity result in
recirculation cells near the solidification front at z = 0. On account of the pronounced
constriction of the film for β = −0.4, these recirculation cells are considerably more
localized. If β is chosen as too negative, the film thickness vanishes between the
solid–liquid interface and the hot plate and there is a loss of steady solutions. This
indicates the importance of contact conditions in the solidification of liquid films. We
come back to this point in the concluding section.

When we consider cases where ρ �=1, a portion of the flow is directed towards
(ρ > 1) or away from (ρ < 1) the solidification front. In these cases, there is no
direct contribution to the deformation of the gas–liquid interface through (4.3).
However, volume change does alter the temperature profile because of convective
heat flow and may therefore alter the morphology of the gas–liquid interface only
when thermocapillarity is present. We see this effect in figure 5, where T l

0 and d0

are compared for ρ = 0.5, 1 and 1.5. Additionally, we have chosen the following
parameter values: M̄ = 1, C̄ = 10, P̄ =5, A=0.1 and α = β = 0. We have shown
in deriving (4.2) that convective heat flow enters the leading-order balance as a
distinguished limit in which Prandtl numbers are of unit order, Pr = P̄ /R̄ =O(1).
For substances with Pr= o(1) (e.g. metals), convection will not appear at leading
order, and therefore the effect of volume change shown in figure 5 does not
occur.

The relative magnitude of volume-change and thermocapillary flows is given by the
ratio

wvc

wtc

=
|1 − ρ|
WM̄

.

Through this relationship, the magnitude of wvc decreases relative to wtc by increasing
W for fixed values of ρ and M̄ . In the sequence of plots in figures 6 and 7, flow
patterns are shown for W =1 (a), 5 (b) and 10 (c). We show expansion (ρ = 0.5) in
figure 6 and contraction (ρ = 1.5) in figure 7. When W = 1, the contours of ψc −W −1x

show no observable recirculation, and the dominant flow pattern is due to volume
change. For W = 5 and W =10, we see that in any given cross-section of the film, the
portion that carries the volume-change flow shrinks as W is increased. Depending
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Figure 6. Flow patterns showing the superposition of thermocapillary and expansion (ρ =0.5)
flows. From top to bottom the strength of volume-change flow relative to thermocapillary flow
is decreased: (a) W = 1, (b) 5, (c) 10. Referring to the flow patterns on the right, the expansion
flow leaving the solid–liquid interface at z = 0 is swept below along the centreline by the
recirculating portion of the flow.

on the value of ρ, this portion of the flow appears either along the film centreline
(ρ = 0.5) or along the gas–liquid interface (ρ =1.5). The remaining portion of the
flow is simply recirculating fluid.

5. Discussion
In the present work, we have analysed steady longitudinal freezing of a two-

dimensional single-component free liquid film, as the film is pulled at a constant speed
through a heat exchanger which brackets the melting temperature. Thermocapillary



Solidification of free liquid films 103

0 0.2 0.4 0.6 0.8

(a)

(b)

(c)

1.0

0.5

1.0

1.5

x

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

ψc
ψc – W –1x

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

x

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

ψc
ψc – W –1x

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

x

z
0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

z

ψc
ψc – W –1x

Figure 7. Flow patterns showing the superposition of thermocapillary and contraction
(ρ = 1.5) flows. From top to bottom the strength of volume-change flow relative to
thermocapillary flow is decreased: (a) W = 1, (b) 5, (c) 10. Referring to the flow patterns
on the right-had side, the contraction flow is swept up along the gas–liquid interface before it
is consumed at the solidification front (z = 0).

and volume-change fluid flows will occur in the melt as a result of temperature
gradients along the film and density change upon solidification. Leading-order
asymptotic solutions were derived in the limit of vanishing aspect ratio (A → 0). These
solutions describe fluid flows along with the thermal fields in the solid and liquid
phases and deformations to the gas–liquid and solid–liquid interfaces. In table 2, we
have included approximate non-dimensional parameter values for aluminium, silicon
and water. The parameters listed are relevant to the discussion that follows.

In our treatment of the heat-transfer problem, we assume that no heat is lost
to the surrounding gas phase. This assumption can be stated more precisely by
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Material Tm (K) ρ Pr Bi C wvc/wtc

Aluminium 933.6 1.07 1.7 × 10−2 1.1 × 10−5 1.8 × 10−5 (a) 0.07 (b) 0.70
Silicon 1683 0.91 1.2 × 10−2 1.6 × 10−5 1.5 × 10−5 (a) 0.05 (b) 0.47
Water 273.2 0.92 9.7 1.7 × 10−3 2.3 × 10−5 (a) 0.08 (b) 0.83

Table 2. Here, we consider a film with dimensions d0 = 10−2 cm and L = 1 cm (A =10−2)
which is pulled through the temperature gradient (TH −TC)/L = 10 Kcm−1 at speeds (a) V = 1
cm s−1 and (b) 10 cm s−1. Approximate parameter values are shown for aluminium, silicon
and water, using physical constants valid at the melting points of each substance.

introducing a Biot number Bi= hgd0/ks,l , where hg is the heat transfer coefficient
for the gas phase, and ks,l is the heat conductivity of either the solid or liquid. The
leading-order temperature profiles that we have obtained are valid for Bi= o(A2).
We have calculated approximate Biot numbers for the materials in table 2 and see
that this is a reasonable assumption when the surrounding air is still, which has
hg ∼ 10 W m−2K−1. Sen & Davis (1982) treat the case with Bi = O(1) but without
phase transformation and show that the temperature distribution in the gas phase
is inherited by the film. In some analyses of float zones, radiative heat losses were
considered (see Rivas & Haya 1999), which could be important for materials with
high melting points.

In our analysis of the fluid dynamics, inertia was neglected by considering Reynolds
numbers R = O(A). The fluid flow in excess of the translational speed of the front
is thus given by a superposition of volume-change and thermocapillary flows with
relative strengths wvc/wtc = (|1 − ρ|/W )/(AM). Volume change produces plug flow
towards (ρ > 1) or away (ρ < 1) from the solid–liquid interface and is expressed at
leading order for |1−ρ|/W = O(1). In the case of thermocapillary flow, fluid is driven
from hot to cold along the gas–liquid interface by surface tension gradients and
recirculates as it approaches the solidification front. Turnover flow at the solid–liquid
interface is treated as a boundary-layer correction which is matched to the outer flow.
The resulting composite flow is expressed at leading order for Marangoni numbers
M = O(A−1).

Leading-order deformations to the gas–liquid interface occur with capillary numbers
C = O(A3). The shape of the interface deviates from one of constant (linearized)
curvature as a result of the thermocapillary flow, since a region of higher pressure at
the solid–liquid interface is necessary to recirculate fluid there. Volume change, on the
other hand, does not deflect the gas–liquid interface at leading order, since a pressure
gradient is not required to drive the uniform flow produced. However, since volume
change produces net flow through the film, it may convect heat. Such convection
is negligible for metals which have Prandtl numbers Pr 	 1. Convection would be
observed at leading order for Pr= O(1) with one example being water which expands
upon solidification. As we have seen, the resulting shift in the liquid temperature
profile has a relatively small effect on the deformation of the gas–liquid interface.
This effect should not be overlooked when pulling speeds are large.

The shape of the solid–liquid and gas–liquid interfaces are also highly dependent
on contact conditions. We have examined angles ϕs = π/2 + Aα and ϕl = π/2 +
Aβ measured in the solid and liquid phases, respectively, with α and β that are
O(1) (refer to figure 2). With these contact conditions, we find that the gas–liquid
interface intersects the solidification front with slope α + β and that the shape of the
solidification front is a parabola with O(A) amplitude, compared to the width of the
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film, and with concavity given by the sign of −α. The values of α and β therefore
have a significant effect on the overall morphology of the solid–liquid and gas–liquid
interfaces. Moreover, we observe that when the sum α + β is chosen sufficiently
negative, the existence of steady solutions is lost. This suggests that the liquid bridge
has broken owing to solidification, which is separate from film rupture resulting from
a van der Waals instability.

The prescription of the contact conditions just described is a macroscopic one. It
has already been commented in the beginning of § 3 that integrable stress singularities
may be present at the tri-junctions which lead to large curvatures in the gas–liquid
interface. This region of high curvature is localized to a microscopic region near the
tri-junction for capillary numbers C → 0. Consequently, a more careful prescription
would consider the local dynamics at the tri-junctions which are responsible for
‘selecting’ the contact angle. This local analysis could be pursued numerically, similar
to the work of Salamon et al. (1995) in the die-swell problem. The solutions presented
in this work then serve as matching conditions ‘at infinity’ for the local flows calculated
at the tri-junctions.

The steady solutions presented here form a basis for further study of the dynamics
of freezing metallic foams. Of course, the foams are often three-dimensional, however,
many of their essential features can be examined with a two-dimensional description
which eliminates much of the geometrical complexity associated with the full three-
dimensional problem. For instance, details of the microflows in individual lamellae
are required for predicting lamellar thinning rates and rupture times, which ultimately
set the timescales for coarsening. In this work, we have employed a two-dimensional
model to examine the nature of the microflows produced by freezing. However, since
lamellar thinning is an inherently unsteady and unstable process, further study will
be required.

This research was supported by US National Science Foundation through the
Research Training Group grant DMS-0636574.
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